Consistent and Asymptotically Normal Parameter Estimates for Hidden Markov Models
نویسندگان
چکیده
منابع مشابه
Parameter estimation in pair hidden Markov models
This paper deals with parameter estimation in pair hidden Markov models (pairHMMs). We first provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The model being biologically motivated, some restrictions with respect to the full parameter space naturally occur. Existence of two different Information divergence rates is established and divergence propert...
متن کاملBayesian posterior mean estimates for Poisson hidden Markov models
This paper focuses on the Bayesian posterior mean estimates (or Bayes’ estimate) of the parameter set of Poisson hidden Markov models in which the observation sequence is generated by a Poisson distribution whose parameter depends on the underlining discrete-time time-homogeneous Markov chain. Although the most commonly used procedures for obtaining parameter estimates for hidden Markov models ...
متن کاملParameter Estimation for Hidden Markov Models with Intractable Likelihoods
Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. Although the use of ABC is widespread in many fields, there has been little investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the as...
متن کاملInformation Geometry Approach to Parameter Estimation in Hidden Markov Models
We consider the estimation of hidden Markovian process by using information geometry with respect to transition matrices. We consider the case when we use only the histogram of k-memory data. Firstly, we focus on a partial observation model with Markovian process and we show that the asymptotic estimation error of this model is given as the inverse of projective Fisher information of transition...
متن کاملProsody-Dependent Acoustic Modeling Using Variable-Parameter Hidden Markov Models
As an effort to make prosody useful in spontaneous speech recognition, we adopt a quasi-continuous prosodic annotation and accordingly design a prosody-dependent acoustic model to improve ASR performances. We propose a variable-parameter Hidden Markov Models, modeling the mean vector as a function of the prosody variable through a polynomial regression model. The prosodically-adapted acoustic m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1994
ISSN: 0090-5364
DOI: 10.1214/aos/1176325762